Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Adv Mater ; : e2401585, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696723

RESUMEN

The processing of visual information occurs mainly in the retina, and the retinal preprocessing function greatly improves the transmission quality and efficiency of visual information. The artificial retina system provides a promising path to efficient image processing. Here, graphene/InSe/h-BN heterogeneous structure is proposed, which exhibits negative and positive photoconductance (NPC and PPC) effects by altering the strength of a single wavelength laser. Moreover, a modified theoretical model is presented based on the power-dependent photoconductivity effect of laser: I ph = - mP α 1 + nP α 2 ${\rm I}_{\rm ph}\,=\,-{\rm mP}^{\alpha _{1}} + {\rm nP}^{\alpha _{2}}$ , which can reveal the internal physical mechanism of negative/positive photoconductance effects. The present 2D structure design allows the field effect transistor (FET) to exhibit excellent photoelectric performance (RNPC = 1.1× 104 AW-1, RPPC = 13 AW-1) and performance stability. Especially, the retinal pretreatment process is successfully simulated based on the negative and positive photoconductive effects. Moreover, the pulse signal input improves the device responsivity by 167%, and the transmission quality and efficiency of the visual signal can also be enhanced. This work provides a new design idea and direction for the construction of artificial vision, and lay a foundation for the integration of the next generation of optoelectronic devices.

2.
Mater Horiz ; 11(8): 1944-1956, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38345779

RESUMEN

To date, the reported injectable hydrogels have failed to mimic the fibrous architecture of the extracellular matrix (ECM), limiting their biological effects on cell growth and phenotype. Additionally, they lack the micro-sized pores present within the ECM, which is unfavorable for the facile transport of nutrients and waste. Herein, an injectable ECM-mimetic hydrogel (IEMH) was fabricated by shortening and dispersing Janus fibers capable of self-curling at body temperature into pH 7.4 phosphate buffer solution. The IEMH could be massively prepared through a side-by-side electrospinning process combined with ultraviolet irradiation. The IEMHs with only 5 wt% fibers could undergo sol-gel transition at body temperature to become solid gels with desirable stability, sturdiness, and elasticity and self-healing ability. In addition, they possessed notable pseudoplasticity, which is beneficial to injection at room temperature. The results obtained from characterization analysis via scanning electron microscopy, total internal reflection fluorescence microscopy, nuclear magnetic resonance spectroscopy, and Fourier-transform infrared spectroscopy indicate that their sol-gel transition under physiological conditions stems from the synergistic action of the tight entanglements between thermally-induced self-curling fibers and the hydrophobic interaction between the fibers. An MTT assay using C2C12 myoblast cells was performed to examine the in vitro cytotoxicity of IEMHs for biomedical applications, and the cell viability was found to be more than 95%.


Asunto(s)
Matriz Extracelular , Hidrogeles , Matriz Extracelular/química , Hidrogeles/química , Hidrogeles/farmacología , Animales , Ratones , Línea Celular , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
3.
Cancer Cell Int ; 24(1): 78, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374122

RESUMEN

BACKGROUND: Liver specific genes (LSGs) are crucial for hepatocyte differentiation and maintaining normal liver function. A deep understanding of LSGs and their heterogeneity in hepatocellular carcinoma (HCC) is necessary to provide clues for HCC diagnosis, prognosis, and treatment. METHODS: The bulk and single-cell RNA-seq data of HCC were downloaded from TCGA, ICGC, and GEO databases. Through unsupervised cluster analysis, LSGs-based HCC subtypes were identified in TCGA-HCC samples. The prognostic effects of the subtypes were investigated with survival analyses. With GSVA and Wilcoxon test, the LSGs score, stemness score, aging score, immune score and stromal score of the samples were estimated and compared. The HCC subtype-specific genes were identified. The subtypes and their differences were validated in ICGC-HCC samples. LASSO regression analysis was used for key gene selection and risk model construction for HCC overall survival. The model performance was estimated and validated. The key genes were validated for their heterogeneities in HCC cell lines with quantitative real-time PCR and at single-cell level. Their dysregulations were investigated at protein level. Their correlations with HCC response to anti-cancer drugs were estimated in HCC cell lines. RESULTS: We identified three LSGs-based HCC subtypes with different prognosis, tumor stemness, and aging level. The C1 subtype with low LSGs score and high immune score presented a poor survival, while the C2 subtype with high LSGs score and immune score indicated an enduring survival. Although no significant survival difference between C2 and C3 HCCs was shown, the C2 HCCs presented higher immune score and stroma score. The HCC subtypes and their differences were confirmed in ICGC-HCC dataset. A five-gene prognostic signature for HCC survival was constructed. Its good performance was shown in both the training and validation datasets. The five genes presented significant heterogeneities in different HCC cell lines and hepatocyte subclusters. Their dysregulations were confirmed at protein level. Furthermore, their significant associations with HCC sensitivities to anti-cancer drugs were shown. CONCLUSIONS: LSGs-based HCC subtype classification and the five-gene risk model might provide useful clues not only for HCC stratification and risk prediction, but also for the development of more personalized therapies for effective HCC treatment.

4.
Immun Ageing ; 21(1): 11, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280989

RESUMEN

BACKGROUND: In the context of the COVID-19 pandemic and extensive vaccination, it is important to explore the immune response of elderly adults to homologous and heterologous booster vaccines of COVID-19. At this point, we detected serum IgG antibodies and PBMC sample transcriptome profiles in 46 participants under 70 years old and 25 participants over 70 years old who received the third dose of the BBIBP-CorV and ZF2001 vaccines. RESULTS: On day 7, the antibody levels of people over 70 years old after the third dose of booster vaccine were lower than those of young people, and the transcriptional responses of innate and adaptive immunity were also weak. The age of the participants showed a significant negative correlation with functions related to T-cell differentiation and costimulation. Nevertheless, 28 days after the third dose, the IgG antibodies of elderly adults reached equivalence to those of younger adults, and immune-related transcriptional regulation was significantly improved. The age showed a significant positive correlation with functions related to "chemokine receptor binding", "chemokine activity", and "chemokine-mediated signaling pathway". CONCLUSIONS: Our results document that the response of elderly adults to the third dose of the vaccine was delayed, but still able to achieve comparable immune effects compared to younger adults, in regard to antibody responses as well as at the transcript level.

5.
J Hazard Mater ; 466: 133522, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244452

RESUMEN

Lakes, crucial antibiotic reservoirs, lack thorough exploration of quantitative relationships between antibiotics and influencing factors. Here, we conducted a comprehensive year-long investigation in Changshou Lake within the Three Gorges Reservoir area, China. The concentrations of 21 antibiotics spanned 35.6-200 ng/L, 50.3-348 ng/L and 0.57-57.9 ng/g in surface water, overlying water and sediment, respectively. Compared with abundant water period, surface water and overlying water displayed significantly high antibiotic concentrations in flat and low water periods, while sediment remained unchanged. Moreover, tetracyclines, fluoroquinolones and erythromycin posed notable risks to algae. Six primary sources were identified using positive matrix factorization model, with aquaculture contributing 21.2%, 22.7% and 25.4% in surface water, overlying water and sediment, respectively. The crucial predictors were screened through machine learning, redundancy analysis and Mantel test. Our findings emphasized the pivotal roles of water quality parameters, including water temperature (WT), pH, dissolved oxygen, electrical conductivity, inorganic anions (NO3⁻, Cl⁻ and F⁻) and metal cations (Ca, Mg, Fe, K and Cr), with WT influencing greatest. Total nitrogen (TN), cation exchange capacity, K, Al and Cd significantly impacted sediment antibiotics, with TN having the most pronounced effect. This study can promise valuable insights for environmental planning and policies addressing antibiotic pollution.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Antibacterianos/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua , China , Sedimentos Geológicos/análisis
6.
J Phys Chem Lett ; 14(50): 11350-11358, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38064648

RESUMEN

Bismuth vanadate (BiVO4) has received intense research interest due to its outstanding performance for solar water splitting, and doping it with molybdenum (Mo) ions can effectively boost photoelectrochemical performance. In this material, highly localized polarons play a key role in the photoconversion process. Herein, we uncovered the influence of Mo dopants on the dynamics of polaronic transient species using transient absorption spectroscopy. We find that the preexisting electron small polarons stemming from the thermal ionization of dopants provide additional centers to capture itinerant holes, which significantly decrease the hole lifetime. However, the introduction of dopants increases the lifetime of self-trapped excitons that arise from the binding of electron polarons and holes. The dependence of the photoelectrochemical performance of BiVO4 photoelectrodes on doping levels can be well explained by combining the dopant effects on the lifetimes of delocalized and self-trapped transient species. Our findings provide guidance for rational optimization of dopant concentration to maximize the PEC efficiency.

7.
Heliyon ; 9(11): e21974, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034814

RESUMEN

Raman-active modes of human skin and pork belly have been studied systematically by a near-infrared Raman spectrometer with an exciting laser of 1064 nm. The main components and quantitative determination of pork belly are extracted by fitting the Raman spectra with the normalized Raman spectra of biochemical reagents such as collagen, elastin, triolein, fibronectin, fibrin, and hyaluronic acid. It demonstrates that the main components and quantity are various at different locations of pork belly, while the main components of human skin are similar to those of pig skin. In a further step, the evolution of the heating time-dependent Raman modes of isolated pig skin has been investigated for the mechanism of burnt skin. One can find that the spatial structure and main components of skin have an excellent thermal stability in the temperature range from -120 to 200 ∘C, which is confirmed by the temperature dependent Raman spectra of isolated pig skin, microporous acellular dermal matrix (MADM) as well as their corresponding biochemical reagents (collagen, elastin, triolein, etc.). These results help understand the mechanism of the living skin burnt by fire or hot water, and supplies an alternative technology for surgeons to diagnose the depth of a burn injury in time.

8.
J Phys Chem Lett ; 14(34): 7618-7625, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37594947

RESUMEN

Re-based transition metal dichalcogenides have attracted extensive attention owing to their anisotropic structure and excellent properties in applications such as optoelectronic devices and electrocatalysis. The present study methodically investigated the evolution of specific Raman phonon mode behaviors and phase transitions in monolayer and bulk ReSe2 under high pressure. Considering the distinctive anisotropic characteristics and the vibration vectors of Re and Se atoms exhibited by monolayer ReSe2, we perform phonon dispersion calculations and propose a methodology utilizing pressure-dependent polarized Raman measurements to explore the precise structural evolution of monolayer ReSe2 under the stress fields. Varied behaviors of the Eg-like and Ag-like modes, along with their specific vector transformations, have been identified in the pressure range 0-14.59 GPa. The present study aims to offer original perspectives on the physical evolution of Re-based transition metal dichalcogenides, elucidating their fundamental anisotropic properties and exploring potential applicability in diverse devices.

9.
J Phys Chem Lett ; 14(25): 5760-5767, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37326517

RESUMEN

Ultrafast photoexcitation can decouple the multilevel nonequilibrium dynamics of electron-lattice interactions, providing an ideal probe for dissecting photoinduced phase transition in solids. Here, real-time time-dependent density functional theory simulations combined with occupation-constrained DFT methods are employed to explore the nonadiabatic paths of optically excited a-GeTe. Results show that the short-wavelength ultrafast laser is capable of generating full-domain carrier excitation and repopulation, whereas the long-wavelength ultrafast laser favors the excitation of lone pair electrons in the antibonded state. Photodoping makes the double-valley potential energy surface shallower and allows the insertion of A1g coherent forces in the atomic pairs, by which the phase reversal of Ge and Te atoms in the ⟨001⟩ direction is activated with ultrafast suppression of the Peierls distortion. These findings have far-reaching implications regarding nonequilibrium phase engineering strategies based on phase-change materials.

10.
Environ Sci Pollut Res Int ; 30(27): 70760-70770, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37155104

RESUMEN

Our previous study indicated excellent dechlorination efficiency and phenol conversion rate in the electrocatalytic reduction of 2,4-dichlorophenol (2,4-DCP) with a Pd-MWCNTs/Ni-foam electrode; it is deserved to investigate whether this electrode can efficiently degrade phenol in electro-Fenton oxidation (EFO) process and realize the effective mineralization of 2,4-DCP in aqueous solution. In this work, the sequential electrocatalytic reduction and oxidation of 2,4-DCP were studied after examining phenol degradation in the EFO process. The results showed that the removal efficiency of 0.31 mM phenol could reach 96.76% after 90-min degradation with the rate constant of 0.0367 min-1, and hydroxy radicals (·OH) were the main active species in the EFO process. In the sequential electrocatalytic reduction and oxidation processes, the removal efficiencies of 2,4-DCP, phenol, and total organic carbon (TOC) reached 99.72%, 97.07%, and 61.45%, respectively. The possible degradation mechanism of 2,4-DCP was proposed through monitoring the reaction products, and the stability and reusability of the electrode were also examined. This study suggested that 2,4-DCP in wastewater can be effectively mineralized to realize its efficient degradation through the sequential electrocatalytic reduction and oxidation.


Asunto(s)
Clorofenoles , Contaminantes Químicos del Agua , Agua , Fenoles , Oxidación-Reducción , Fenol , Electrodos
11.
Sci Total Environ ; 881: 163392, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37044334

RESUMEN

The accumulation of Cd in soil-rice systems at a large region is often extremely complicated due to environmental heterogeneity and the interactions of multiple influencing factors. However, the interactive effects and quantification of the contributions of influencing factors on Cd accumulation in large regions remain unclear. In this study, conditional inference trees and random forest analysis were used to identify the interactions of various factors (soil properties, topography and demographic-economic), and quantify their contributions to Cd accumulation in soil-rice systems of Sichuan-Chongqing region, China. The results showed that Cd content in the soil was the most significant influencing factor on Cd accumulation in soil-rice systems, especially bioavailable Cd in soil contributed to 35.73 % and 54.78 % for soil total Cd (Cdsoil) and brown rice Cd (Cdrice), respectively. Population density (PD) and elevation contributed 31.16 % and 27.40 % to Cdsoil content, respectively, and their interaction promoted the increase in Cdsoil content. Moreover, PD played a leading role in Cdsoil content when the elevation exceeded 324 m. The relative importances of slope and elevation for Cdrice content were 16.81 % and 8.49 %, respectively, and their interaction facilitated the increment of Cdrice content. As soil pH, gross domestic product (GDP) and slope decreased, the interaction of soil pH with GDP led to the increase of bioavailability factor (BAF), and that with slope enhanced the bioaccumulation factor (BCF). In addition, soil pH, PD and elevation were of considerable importance for the migration and transformation of Cd, with contributions of 22.11 %, 12.90 % and 12.52 % to BAF, and 5.05 %, 5.62 % and 5.50 % to BCF, respectively. This study is hopeful to provide a scientific insight into the prevention and control of Cd contamination in soil-rice systems at a large region.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Suelo/química , Oryza/química , Contaminantes del Suelo/análisis , China
12.
J Phys Chem Lett ; 14(13): 3208-3215, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36971470

RESUMEN

Re molecular complexes incorporated into two metal-organic frameworks were investigated to disclose the host-guest interaction by infrared and 1H nuclear magnetic resonance and to explore the microenvironment around the Re complex by absorption and photoluminescence spectra. ZIF-8 provides a confined space to isolated Re via an electrostatic interaction, while UiO-66 exerts a relaxed space to accessible Re via a coordination interaction. For CO2 two-electron photoreduction to CO, the turnover number of 28.6 in Re@ZIF-8 is 10-fold that of 2.7 in Re@UiO-66. The electron transfer is promoted in Re@ZIF-8 by a local electrostatic field with a cross-space pathway, whereas it is retarded in Re@UiO-66 as the solvation shell surrounding Re. In the following CO2 activation, the charged intermediate species could be stabilized in Re@ZIF-8 by spatial confinement, while Re-triethanolamine adducts prevailed in Re@UiO-66 with the accessibility of the Re complex. This work demonstrates a feasibility of diverting the CO2 activation pathway by the microenvironment of a molecular catalyst in the field of artificial photosynthesis.

13.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904434

RESUMEN

The thermal protection performance of fire suit is vital to the safety of firefighters. Using certain physical properties of fabrics to evaluate their thermal protection performance speeds up the process. This work aims to develop a TPP value prediction model that can be easily applied. Five properties of three types of Aramid 1414 made of the same material were tested, and the relationships between the physical properties of Aramid 1414 and its thermal protection performance (TPP value) were investigated. The results showed that the TPP value of the fabric had a positive correlation with grammage and air gap, and a negative correlation with the underfill factor. A stepwise regression analysis was used to solve the collinearity issue between the independent variables. Finally, a model for predicting TPP value by air gap and underfill factor was developed. The method adopted in this work reduced the number of independent variables in the prediction model, which is conducive to the application of the model.

14.
Chemosphere ; 322: 138193, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36812998

RESUMEN

In this study, a blue TiO2 nanotube arrays anode on porous titanium substrate (Ti-porous/blue TiO2 NTA) was successfully fabricated by facile anodization and in situ reduction, and was used to investigate the electrochemical oxidation of carbamazepine (CBZ) in aqueous solution. The surface morphology and crystalline phase of the fabricated anode were characterized by SEM, XRD, Raman spectroscopy and XPS, and the electrochemical analysis confirmed that blue TiO2 NTA on Ti-porous substrate had larger electroactive surface area, better electrochemical performance and higher ⋅OH generation ability than that on Ti-plate substrate. The removal efficiency of 20 mg L-1 CBZ in 0.05 M Na2SO4 solution reached 99.75% at 8 mA cm-2 after 60 min electrochemical oxidation, and the rate constant was 0.101 min-1 with low energy consumption. EPR analysis and free radical sacrificing experiments showed that ⋅OH played a key role in the electrochemical oxidation. The possible oxidation pathways of CBZ were proposed through the identification of degradation products, and the main reactions may involve deamidization, oxidization, hydroxylation and ring-opening. Compared with Ti-plate/blue TiO2 NTA anode, Ti-porous/blue TiO2 NTA anode displayed excellent stability and reusability, and is promising to be used in the electrochemical oxidation of CBZ in wastewater.


Asunto(s)
Nanotubos , Contaminantes Químicos del Agua , Titanio/química , Agua , Porosidad , Nanotubos/química , Oxidación-Reducción , Electrodos , Carbamazepina , Contaminantes Químicos del Agua/química
15.
Front Immunol ; 14: 1109381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845116

RESUMEN

Introduction: Despite the protection and management of skin has been paid more and more attention, effective countermeasures are still lacking for patients suffering from UV or chemotherapy with damaged skin. Recently, gene therapy by small interfering RNA (siRNA) has emerged as a new therapeutic strategy for skin lesions. However, siRNA therapy has not been applied to skin therapy due to lack of effective delivery vector. Methods: Here, we develop a synthetic biology strategy that integrates the exosomes with artificial genetic circuits to reprogram the adipose mesenchymal stem cell to express and assemble siRNAs into exosomes and facilitate in vivo delivery siRNAs for therapy of mouse models of skin lesions. Results: Particularly, siRNA enriched exosomes (si-ADMSC-EXOs) could be directly taken up by the skin cells to inhibit the expression of skin injury related genes. When mice with skin lesions were smeared with si-ADMSC-EXOs, the repair of lesioned skin became faster and the expression of inflammatory cytokines were decreased. Discussion: Overall, this study establishes a feasible therapeutic strategy for skin injury, which may offer an alternative to conventional biological therapies requiring two or more independent compounds.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Ratones , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , FN-kappa B/metabolismo , Exosomas/genética , Exosomas/metabolismo , Piel/lesiones , Células Madre Mesenquimatosas/metabolismo
16.
Cell Rep ; 42(2): 112075, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36774551

RESUMEN

Booster immunizations and breakthrough infections can elicit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant neutralizing activity. However, the durability of the neutralization response is unknown. We characterize the sensitivity of BA.1, BA.2, BA.2.75, BA.4/BA.5, BF.7, BQ.1.1, and XBB against neutralizing antibodies from vaccination, hybrid immunity, and breakthrough infections 4-6 months after vaccination and infection. We show that a two-dose CoronaVac or a third-dose ZF2001 booster elicits limited neutralization against Omicron subvariants 6 months after vaccination. Hybrid immunity as well as Delta, BA.1, and BA.2 breakthrough infections induce long-term persistence of the antibody response, and over 70% of sera neutralize BA.1, BA.2, BA.4/BA.5, and BF.7. However, BQ.1.1 and XBB, followed by BA.2.75, are more resistant to neutralization, with neutralizing titer reductions of ∼9- to 41-fold, ∼16- to 63-fold, and ∼4- to 25-fold, respectively. These data highlight additional vaccination in CoronaVac- or ZF2001-vaccinated individuals and provide insight into the durability of neutralization against Omicron subvariants.


Asunto(s)
Infección Irruptiva , COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales
17.
Mater Horiz ; 10(4): 1309-1323, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36692359

RESUMEN

Flexoelectricity originates from the electromechanical coupling interaction between strain gradient and polarization, broadly applied in developing electromechanical and energy devices. However, the study of quantifying the longitudinal flexoelectric coefficient (µ11) which is important for the application of atomic-scale two-dimensional (2D) materials is still in a slow-moving stage, owing to the technical challenges. Based on the free-standing suspension structure, this paper proposes a widely applicable method and a mensurable formula for determining the µ11 constant of layer-dependent 2D materials with high precision. A combination of in situ micro-Raman spectroscopy and piezoresponse force microscopy (PFM) imaging was used to quantify the strain distribution and effective out-of-plane electromechanical coupling, respectively, for µ11 constant calculation. The µ11 constants and their physical correlation with the variable mechanical conditions of naturally bent structures have been obtained extensively for the representative mono-to-few layered MX2 family (M = W and Mo; X = S and Se), and the result is perfectly consistent with the estimated order-of-magnitude of the µ11 value (about 0.065) of monolayer MoS2. The quantification of the flexoelectric constant in this work not only promotes the understanding of mechanical and electromechanical properties in van der Waals materials, but also paves the way for developing novel 2D nano-energy devices and mechanical transducers based on flexoelectric effects.

18.
Nanoscale ; 15(5): 2323-2331, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36637072

RESUMEN

Two-dimensional (2D) Bi2O2Se semiconductors with a narrow band gap and ultrahigh mobility have been regarded as an emerging candidate for optoelectronic devices, whereas the ambiguous phonon characteristics and optical properties still limit their future applications. Herein, high-quality centimeter-scale 2D Bi2O2Se films are successfully synthesized to disclose the lattice dynamics and dielectric functions under the control of thickness and temperature. It has been demonstrated that the stronger electrostatic Bi-Se interactions result in a stiffened phonon vibration of thicker Bi2O2Se layers. Three excitons (Ea, Eb, and Ec) exhibit significant red shifts with layer stacking. Interestingly, the dielectric properties in the visible-near infrared region (Ea and Eb) are dominated by the combined effect of the joint density of states and mass density, whereas the dielectric properties in the ultraviolet region (Ec) are dominated by the exciton effect. Furthermore, the temperature-sensitivity of the phonon frequency and exciton transition energies is revealed to be layer-dependent. In particular, the optical response of Eb excitons exhibits a prominent dependence on temperature, which indicates a promising optical modulation by temperature in the visible spectrum. This study enriches the knowledge about phonon dynamics and dielectric properties for 2D Bi2O2Se, which provides an essential reference for high-performance related optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...